

Dementia: great expectations Hope and realism Henry Brodaty

Never Stand Still

Medicine

FIGHT ALZHEIMER'S SAVE AUSTRALIA FIGHT DEMENTIA.ORG.AU

NHMRC National Institute for Dementia Research (NNIDR)

Today's topics

- Terminology
- Cause of AD
- Why this is important
- Diagnosis
- Prevention
- Drug treatment of AD the silver bullet
- Behavioural and Psychological Symptoms
- Conclusions

Let's get our terms straight

- Dementia/s = umbrella term
 - Alzheimer's disease (AD)
 - The other (non-Alzheimer's) dementias
 - Vascular dementia
 - Lewy body dementia
 - Fronto-temporal dementia
 - 100 others
- Mild Cognitive Impairment
- Cognition

Cause: Brain in AD

- Brain atrophy, loss of nerve synapses and branches
- Breakdown of APP releasing
 Aβ protein → clumps →
 toxic to brain → plaques
- Phosphorylated tau → paired helical filaments → NFTs
- Chemicals in brain ↓ esp ACh

The cause of AD??

- Make excess Aβ protein
 - Familial AD, mutations in APP, PSEN1 or 2
 - Onset in 40s, 50s.
- Decreased clearance of β- amyloid
 - Late onset AD, ApoE4
- Role of tau
- Many other pathways involved, eg...

Many other factors ...

- Insulin resistance in brain
- Inflammation
- Support cells (astrocytes, glial cells) in brain
- Progranulin
- Repressor Element 1-Silencing Transcription factor (REST) protects neurons from oxidative stress and amyloid β-protein toxicity
 - decreased in AD and other dementias

Cause: realism

- For young onset autosomal dominant AD cause seems clear
- For late onset sporadic AD, we know risk factors and pathological paths but not cause

Why dementia is important ... globally?

- 47 million people → 131 m by 2050
 - 2/3 in developing countries
- ≈10m new cases per year, every 3.2 seconds
- Cost US\$818 billion, 1.09% of global GDP

Why dementia is important in Australia?

- 413,000 in 2017 \rightarrow 1.1 million by 2056 ¹
- 244 new cases of dementia each day in 2017
- Cost to community \$14 billion in 2017
 - 61% direct costs, 38% opportunity costs
 - → \$28b by 2056
- If 5% ↓ n^o of people ≥ 65 developing dementia
 → save \$5.7b from 2016-25 & \$120.4b by 2056
- 28,000 under 65 years of age ²
- Aboriginal people have higher rate
- ¹ The Economic Cost of Dementia in Australia 2016-2056, NATSEM 2017; ² Dementia in Australia, AIHW, 2012

Why dementia is important?

Because we fear it

Why dementia is important?

- Because we fear it
- Because we are getting older as a population
- Because we are living longer as individuals
- Because age is the major risk factor for dementia
- Because we have it OR we know someone who has it
- Because we see what dementia does

The hope

- Are numbers decreasing?
- Studies from Sweden, Denmark, Spain, Netherlands, USA show that the number of new cases per each age group has declined in the last 20 years
- Better education, health care, diet, lifestyle may be responsible

The realism

- Prevalence, number of existing cases, is ↑
 - Ageing of population outweighs decline in new cases
 - People with dementia are living longer
- Obesity & diabetes epidemics may \u2207incidence
- Developing countries are ageing rapidly

Diagnosing Dementia: the gap

- 2-3 year gap from Sx to Dx
- 50% of (mild) dementia undiagnosed in GP
- DTA, AA, LaTrobe and DCRC 'Timely Diagnosis'
 - Aim to reach 5000 GPs
 - Face-face or online

Diagnosis: the revolution

Tradition: History + Examination + Tests → Dx

- Neuroimaging
 - MRI scans
 - PET imaging, now of amyloid & tau protein
- Cerebro-Spinal Fluid (Lumbar puncture)
- Genetics advances but not yet for most
- Blood test advances but not yet

PET amyloid imaging: normal vs AD

- 35% persons60+ amyloid+
- † risk clinical progression
- Will all amyloid +ve develop AD?

Lumbar puncture = Spinal tap

- Change in proteins in CSF
 - Decrease in amyloid beta protein and increase in tau and phospho-tau proteins
 - If all measures are normal in pt with mild memory disturbances almost excludes AD

Diagnosis of AD - realism

- Biggest challenge is in primary care
- No test 100% accurate yet
- No blood test sufficiently accurate to use yet
- The older the patient, the more likely brain will have multiple pathologies AD, α-synuclein, TDP43, vascular changes
- Predictive testing not accurate enough and not recommended
- Would you be tested today to see if you would develop AD in 2, 5 or 20 years?

Can we prevent dementia?

- Disease elimination
 - eg smallpox vaccination
 - best prospect is AD vaccine for those at risk
- Disease postponement¹: delay AD onset by...
 - 2 years, ↓ prevalence by 20%
 - 5 years, ↓ prevalence by 50%

¹Brookmeyer et al. (1998)

Is early life the most important target?

- 60-70% of world dementia in developing countries
 - Low foetal birth weight
 - Poor or no education
 - Poor socio-economic environment
- 12.4% West Australia's Kimberley Aboriginal people have dementia = 5.2x non-indigenous¹

Smith K et al, Neurology, 2008;71: 1470-1473

- Look after your heart
- Be physically active
- Mentally challenge your brain
- Follow a healthy diet
- Enjoy social activity

yourbrainmatters.org.au

Dosage effect

As cardiovascular risk factors accumulate, AD dementia risk increases

- Hypertension
- Smoking
- Hypercholesterolemia
- Obesity
- **Diabetes**
- Physical inactivity

Number of risk factors

Statins to prevent AD

- Good evidence that statins neither prevent nor increase risk of cognitive impairment or dementia¹
- Statins linked to reduced AD risk differences by sex, race & statin ²

¹McGuiness B et al, 2016; CD003160 (1) Cochrane Database of Systematic Reviews

² Zissimopoulos JM et al, 2016, JAMA Neurology

Physical activity

Can exercise protect against dementia?

- Preserve cognition and slow cognitive decline
- Decreased incident dementia
- 8/11 RCTs in healthy older persons: cognitive & fitness improved
 - especially cognitive speed and attention
- Biomarkers ↑ e.g. brain volume
- Animal studies growth factors↑, BDNF↑,
 neurogenesis↑, inflammation↓, AD path. ↓

Graff-Radford NR, Alzheimer's Research and Therapy 2011, 3:6

Physical activity

- Physical activity benefits older adults to prevent dementia: Never too late to start
- Moderate intensity (brisk walking) 30 min 5d/wk
- Evidence for specific exercise not clear; more than one type and more exercise may be better
- Resistance training better in SMART Trial²
- More is better puffed, weights
- \geq 3x per week; >150 min/wk, e.g. Perth Study³
- Combine with social and mental activity better?

Denkinger et al. *Z Gerontol Geriat 2012*; 45:11–16 DOI 10.1007/s00391-011-0262-6 Fiatarone Singh MA et al *JAMDA* 2014;15:873-80; Lautenschlager N, JAMA 2008

The hope: physical activity ...

- > Improves fitness
- ► Improves physical health ↓ heart disease, Hi BP, diabetes, some types of cancer, osteoporosis, sarcopenia
- Reduces morbidity & mortality
- > Improves mental health
- > Improves confidence, quality of life

http://www.mednwh.unimelb.edu.au/research/health_promotion.htm

Physical activity: the realism

- Reverse causality
- Effect size of physical activity
- Interaction of genetics and lifestyle
- Side effects possible if not done correctly

Mental Activity

Mental Activity & Dementia

- Meta-analysis of 22 studies, 29,000 individuals
- ↑ complex mental activity in late life = ↓ risk of dementia by half; OR = 0.54 (0.49-0.59) ¹
- Dose response relationship evident¹
- Results held when covariates in source studies were controlled for²

Cognitive training

- Systematic review of RCTs with longitudinal follow-up (>3mths) in healthy elderly¹
 - 7 RCTs met inclusion criteria, low quality
 - Strong effect size for cognitive exercise intervention vs wait-and-see controls
 - Longer FU duration (>2yrs) → ES no lower
- Review of cog. training or rehab in dementia²
 - 11 RCTs, no benefit

Valenzuela & Sachdev (2009) Am J Geriatr Psychiatry 17(3) Bahar-Fuchs, Clare, Woods – Cochrane Database Syst Rev. 2013 Jun 5;6:CD003260. doi: 10.1002/14651858.CD003260.pub2.

Realism mental training

- Reverse causality
- Which mental activity
 - Crosswords?? Sudoku??
 - Musical instrument? New language?
 - Computer cognitive training, are benefits:
 - Sustained?
 - Generalise beyond computer?

Diet

Nutrition / Supplements

- Alcohol ? moderate
- Fish/Seafood/ω3 ?
- Vitamin D ?
- Caffeine ?
- Vitamin E ?
- Vitamin C x

Food sources better than supplements

Smoking and AD

- Current smoking
 - increase risk for AD
- Previous smoking
 - Risk not significantly increased

Anstey K. Am J Epidem 2008

Alcohol

- Some evidence benefit with moderate alcohol
 - i.e. abstinent → higher risk, j-shaped curve
- Not all studies confirm
- Interaction with ApoE4 contradictory results?
- Heavy alcohol is risk factor
- Which alcohol (red) wine?
 - Evidence not strong
- What is moderate?

Natural therapies

- Ginkgo biloba
- Turmeric, curcumin
- DHA, omega 3
- Fo-ti root
- Soy isoflavone
- Vitamin E, Selenium
- Folate, B6, B12
- Saffron
- Brahmi
- Huperzine A

Ginkgo leaves

Member of ginger family

Diet: realism

- Diet, exercise, vascular health, diabetes, obesity – all linked
- Obesity in mid-life is a risk factor; late life not
- RCTs for long periods impossible

Other factors

- HRT neither harmful or beneficial close to menopause
- Hearing loss ↑risk RR 1.55-2.32
- Less 'socialisation'
 - increases risk of cognitive decline/ dementia
 - moderates effect of
 Alzheimer pathology on cognitive function

Environmental factors

- 30% of population attributable risk of AD cases from 7 environmental factors
- If 25% lower prevalence of these risk factors ->
 3 million fewer AD cases worldwide
- Highest estimated Pop^u Attributable Risk for AD
 - Global: low education (19-1%, 95% CI 12-3-25-6)
 - USA: physical inactivity (21.0%, 95% cl 5.8-36.6)
 - Europe and UK similar (20·3%, 5·6-35·6)

Barnes & Yaffe, 2011; Norton et al, 2014

Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER)

- Diet
- Cognitive training
- Exercise PMR and aerobic
- Manage metabolic and vascular risk factors
- Social activities

Mean change in cognition over 2 years

Mean change in cognition over 2 years

Prevention of Dementia By Intensive Vascular Care (preDIVA) trial

- Multicomponent intervention targeting vascular risk factors
- New cases of all-cause dementia and AD did not significantly differ between groups.
- Signif. less non-AD dementia in intervention (1%) vs control group (2%) (HR 0.37; p=0.007)
- Subgroup with untreated hypertension adherent to intervention, significantly fewer new dementia cases (4% vs 7%; HR 0.54; p .02)

Internet based prevention trials

- Healthy Aging Through Internet Counselling in the Elderly (HATICE) http://www.hatice.eu/
- Maintain Your Brain
 - NHMRC funded, 5 years, largest trial in world
 - 18,000 Australians 55-75 years old
 - Exercise, cognitive training, diet, depression
 - blood pressure, cholesterol, glucose
 - Tailored to individual risk factors

www.cheba.unsw.edu.au

Drug prevention trials

- A4 Study Clinically normal, Aβ positive
- DIAN TU Dominantly inherited AD
- Alzheimer Prevention Initiative (Colombia)

- Prevent MCI → AD
 - Tau therapeutics
 - β-secretase inhibitor

Drug trials = the hope

Strategies

- Anti-amyloid
 - Enzyme inhibitors
 - Immunotherapies active, passive
- Anti- tau
- Neurotransmitter enhancers
 - Cholinesterase inhibitors
 - Memantine
 - Serotonin receptor antagonists
- Others: intranasal insulin, RAGE, NGF

Anti-amyloid therapies - 1

- Reduce production of Aβ protein
 - α-secretase upregulation
 - Etazolate (EHT-0202)
 - β-secretase inhibition
 - Rosiglitazone (stimulate PPARγ) failed
 - Verubecestat Merck) failed
 - y-secretase inhibition
 - Semagecestat –worse than control

Anti-amyloid therapies - 2

- Immunisation to promote Aβ clearance
 - Active immunisation
 - AN-1792 → sterile meningoencephalitis
 - Shorter peptides to avoid T-cell activation
 - Passive immunisation with antibodies
 - Bapineuzumab ceased, negative result
 - Solanezumab primary outcome negative (Nov 2016)
 - Gantenerumab trial stopped; but ↓PET plaque (ns) and ↓ tau in CSF (signif)
 - Aducanumab Phase 1b positive
 - IV immunisation with immunoglobulin failed

Anti-amyloid therapies - 3

- Prevent Aβ aggregation
 - Tramiprosate (3APS) ceased
 - PBT1 (clioquinol) ? eye toxicity
 - PBT2 disrupts Zn, Cu required for aggregation

Anti-tau

- Modulation of phosphorylation
 - Glycogen synthase kinase 3β (GSK3β) &
 Cyclin dependent kinase 5 (CDK5) inhibitors
 - Activate phosphatase
- Tau-directed immunotherapy
 - Active or Passive
- Small molecule inhibitors of protein aggregation
 - Methylthioninium (methylene blue, Rember)
- Microtubule stabilisation Epothilone D (EpoD)
- Antisense oligonucleotides

Promote neuronal function

- Mitochondrial dysfunction
 - Latrepirdine (Dimebon) failed
- Nerve growth factors: Delivery to brain is barrier
 - Viral vectors
 - Nanotechnology
- Inhibit RAGE (receptor for advance glycation end-products)
- Anti-inflammatory treatments TNF-α blocker

Other treatments

- 5-HT6 Receptor antagonist, idalopirdine
 - Encouraging results in 2014 (with donepezil)
 - higher doses no benefit; lower doses ??
- Long acting intra nasal insulin
- Deep brain stimulation targeting limbic memory circuit in pts with mild AD
- Nerve growth factor
- Nutraceuticals Axona, Souvenaid

AD Cures – graveyard

- Trimiprosate (Alzhemed)
- Flurbiprofen (tarenflurbil)
- Anti-inflammatory
- Rosiglitazone
- Statins
- Leuprolide

- Semagacestat
 (γ-secretase inhibitor)
- Bapineuzemab
- Verubecestat
 (β-secretase inhibitor)
- Celecoxib
- Dimebon
- Intravenous Immunoglobulin

Why failures despite Phase 1/2 trial success?

- Wrong time? Too late in disease process?
- Wrong target? Amyloid may not be the one
- Wrong patient? 30% of trial participants did not have AD as per amyloid PET Scans
- Wrong model? May need multiple drugs simultaneously eg TB, H. bacter, leukaemia

Realism – drug treatments

- No silver bullets
- Billions invested with no return
- Pharma still interested but some not
- Most trials for AD
- World Dementia Council aim for cure by 2025 unlikely¹

'The mainstay of treatments for AD is supportive care from family .." 2

²Scheltens P et al, Lancet, 2016:388:505-17

¹ Cummings J et al, 2016 Alz Research & Therapy

Behavioural and Psychological Symptoms of Dementia BPSD

What are BPSD?

- Agitation
- Aggression
- Calling out/ screaming
- Disinhibition (sexual)
- Night time disturbance
- Shadowing
- Swearing
- Wandering

- Depression
- Anxiety
- Apathy
- Delusions
- Hallucinations
- Irritability
- Elation/euphoria

The bio-psycho-social framework

Socioenvironmental

Interpersonal

Biological

Psychological

How to intervene: Environment

- Secure grounds
- Personalised space
- Non-institutionalised environment
- Home-like
- Colour, furnishings, architecture, lighting

- Resident mix
- Size of facility
- Aroma therapy
- Pets
- Robots
- Toys, dolls

Interpersonal

- Family carers can be effective therapists for people living in the community (ES 0.34)¹
- Person centred care training reduced agitation in NHs – sustained 4 months later & cost-effective ²

¹Brodaty H & Arasaratnam C, Am J Psychiatry, 2012

² Chenoweth L et al, Lancet Neurology, 2009

Psychological

- Humour therapy ↓agitation, ↓depressⁿ, ↑QoL^{1,2}
- Tailored Activity Program^{3,4} OT led
- Others Volunteers, music, singing, dance therapy, Integrating kindergarten/ babies

¹Low LF et al BMJ Open 2013; ² Brodaty et al Am J Ger Psych 2014 ³ Gitlin L et al, Am J Ger Psych 2008 & ⁴Gerontologist, 2009

Key elements

- Engagement
- Understanding
- Time

Barriers

- Time
- Money
- Staff
- Attitudes
- Training

Pharmacological interventions

Rx for BPSD - summary

- Antipsychotics effect on aggression, psychosis,
 ?agitation, but \undersignish risk of AEs, stroke, death
- Antidepressants negative trials for depression
 - Citalopram effect on agitation, AEs QTc↑, cog↓
- Analgesics effect on agitation (paracetamol 3g/d)
- Anticonvulsants no or little effect
- Benzodiazepines risk of confusion, falls
- Cholinesterase inhibitors effect on apathy
- Memantine ?benefit for agitation/aggression/ delusions/ hallucinations

HALT study: Deprescribing antipsychotics in NHs

- Identify residents on antipsychotics > 3 m
- Permission from NHs, families & GPs
- Train nurse champions in nursing homes to teach other nurses how to manage BPSD
- Academic detailing of GPs
- ≈75% cease antipsychotics; remain off for 12m
- No re-emergence of behaviours
- No significant drug substitution

Conclusions

- Research on dementias challenging & vibrant
- The more we know, the more we don't know!
- Research focus on AD but strong groups working in Vascular dementia, LBD, FTD
- Research can drive drug Rx and improvements in diagnosis and care
- Australia has leading researchers in basic, diagnostic, translational, carer, residential areas
- Funding for research is major issue
- Australian Dementia Registry would boost care & research

Thank you

Centre for Healthy Brain Ageing (CHeBA) UNSW www.cheba@unsw.edu.au

Dementia Collaborative Research Centre www.dementiaresearch.org.au

h.brodaty@unsw.edu.au

